首页  >  高中

高中课程指导410:学霸教你高考数学答题秘技

高中 2024-04-29 05:00:16 63

原标题:高中课程指导410:学霸教你高考数学答题秘技

高中课程指导410:学霸教你高考数学答题秘技

资料来源:高中数学解题研究群 2024-04-17 00:01 辽宁

选择填空题答题套路

选择题十大速解方法:

排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法等等

高考数学选择题在高考试卷中所占比例较大,具有题小、基础、快速、灵活的特征. 下面对高考数学高考选择题的解法作一些归纳,以期对同学们有所帮助.

一、解答选择题的基本策略

解答选择题的基本策略是“小题小做,不择手段”.

1.要充分挖掘各选择支的暗示作用;

2.要巧妙有效的排除迷惑支的干扰.

快速解答选择题要靠基础知识的熟练和思维方法的灵活以及科学、合理的巧解,应尽量避免小题大做.

二、选择题常用解题方法

由于高考数学选择题四个选项中有且只有一个结论正确,因而解选择题要沿着以下两个途径思考:一是否定3个结论;二是肯定一个结论.常用的方法有:直接法,筛选法(排除法),利用数学中的二级结论法,特例法 (特殊值,特殊图形,特殊位置,特殊函数,)是重点方法,还有数形结合法,验证法,估算法 ,特征分析法 ,极限法等,下面举例说明.

1、直接法

从题设条件出发,运用数学知识通过推理或计算得出结论,再对照各选项作出判断的方法称为直接法. 直接法的思路是肯定一个结论,是将选择题当作解答题求解的常规解法. 对一些为考查考生的逻辑推理能力和计算能力而设计编拟的定量型选择题常用直接法求解.

【评析】本题考查抛物线及向量的基本知识,解题的关键是将向量运算转化为坐标运算,再结合抛物线的性质将点到焦点的距离转化为点到准线的距离.

2、筛选法(排除法)

当题目题设条件未知量较多或关系较复杂,不易从正面突破,但根据一些性质易从反面判断某些答案是错误的时候,可用筛选法排除不正确的选项,得到正确答案. 筛选法思路是否定三个结论,有些问题在仔细审视之后,凭直觉可迅速作出筛选.

【评析】若用直接法求解则耗时费力,而用筛选法则是明智的选择.

3、利用数学中的二级结论法

【评析】通过数学中的一些重要结论,或者数学内容的重要特征,可以避免繁杂的运算.

4、特例法

有些选择题涉及的数学问题具有一般性,而提供的选择支往往互相矛盾(即任意两个选择支不能同时成立),这类选择题要严格推证比较困难,此时不妨从一般性问题退到特殊性问题上来,通过取适合条件的特殊值、特殊图形、特殊位置等进行分析,往往能简缩思维过程、降低难度而迅速得解.

【评析】若直接求解则繁琐且易错,而通过特值法则能迅速作出判断,对考生的直觉思维能力和策略创造能力是一个很好的检测.

5、数形结合法

对于一些具有几何背景的数学问题,如能构造出与之相应的图形进行分析,往往能在数形结合、以形助数中获得形象直观的解法.

6、验证法

将题目所提供的各选择支或特值逐一代入题干中进行验证,从而确定正确的答案. 有时可通过初步分析,判断某个(或某几个)选项正确的可能性较大,再代入检验,可节省时间.

7、估算法

由于选择题提供了唯一正确的选择支,解答又无需过程.因此可以猜测、合情推理、估算而获得.这样往往可以减少运算量,当然自然加强了思维的层次.

【评析】估算,省去了很多推导过程和比较复杂的计算,节省了时间,从而显得快捷.其应用广泛,它是人们发现问题、研究问题、解决问题的一种重要的运算方法.

8、特征分析法

通过对题干和选择支的关系进行分析,挖掘出题目中的各种特征,如结构特征、数字特征、取值范围特征、图形特征、对称性特征、整体特征等,从而发现规律,快速辨别真伪.

9、利用极限思想

极限思想是一种基本而重要的数学思想. 当一个变量无限接近一个定量,则变量可看作此定量. 对于某些选择题,若能恰当运用极限思想思考,则往往可使过程简单明快.

【评析】应用运动变化的观点,灵活地用极限思想来思考,避免了复杂的运算,优化了解题过程,降低了解题难度.

解答选择题要小题小做,快速准确作答,在解题过程中可以多种方法联合使用.以提高解答选择的速度和准确率.

填空题四大速解方法:

直接法、特殊化法、数形结合法、等价转化法。

题型特点概述

1.填空题的特征

填空题是不要求写出计算或推理过程,只需要将结论直接写出的“求解题”.填空题与选择题也有质的区别:第一,填空题没有备选项,因此,解答时有不受诱误干扰之好处,但也有缺乏提示之不足;第二,填空题的结构往往是在一个正确的命题或断言中,抽出其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活.

从历年高考成绩看,填空题得分率一直不是很高,因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分.因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫.

2.解填空题的基本原则

解填空题的基本原则是“小题不能大做”,基本策略是“巧做”.解填空题的常用方法:直接法、特例法、数形结合法、构造法、归纳推理法等.

方法一、直接法

直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.

思维升华 直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.

方法二、特例法

当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出待求的结论.这样可大大地简化推理、论证的过程.

思维升华 求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.本题中的方法二把平行四边形看作正方形,从而减少了计算量.

方法三、数形结合法(图解法)

对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果,Venn图、三角函数线、函数的图象及方程的曲线等,都是常用的图形.

思维升华 图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.

方法四、构造法

构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.

思维升华 构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.第(1)题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.

方法五、归纳推理法

做关于归纳推理的填空题的时候,一般是由题目的已知可以得出几个结论(或直接给出了几个结论),然后根据这几个结论可以归纳出一个更一般性的结论,再利用这个一般性的结论来解决问题.归纳推理是从个别或特殊认识到一般性认识的推演过程,这里可以大胆地猜想.

思维升华 归纳推理主要用于与自然数有关的等式或不等式的问题中,一般在数列的推理中常涉及.即通过前几个等式或不等式出发,找出其规律,即找出一般的项与项数之间的对应关系,一般的有平方关系、立方关系、指数变化关系或两个相邻的自然数或奇数相乘基本关系,需要对相应的数字的规律进行观察、归纳,一般对等式或不等式中的项的结构保持一致.

规律方法总结

1.解填空题的一般方法是直接法,除此以外,对于带有一般性命题的填空题可采用特例法,和图形、曲线等有关的命题可考虑数形结合法.解题时,常常需要几种方法综合使用,才能迅速得到正确的结果.

2.解填空题不要求求解过程,从而结论是判断是否正确的唯一标准,因此解填空题时要注意如下几个方面:

(1)要认真审题,明确要求,思维严谨、周密,计算有据、准确;

(2)要尽量利用已知的定理、性质及已有的结论;

(3)要重视对所求结果的检验及书写的规范性.

一、知识整合

1

高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大。解答选择题的基本要求是四个字——准确、迅速。

2

选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面。

解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。

解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。

3

解数学选择题的常用方法,主要分直接法和间接法两大类。直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答。因此,我们还要掌握一些特殊的解答选择题的方法。

二、方法技巧

1、直接法

直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择。涉及概念、性质的辨析或运算较简单的题目常用直接法。

直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解。直接法适用的范围很广,只要运算正确必能得出正确的答案。提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建立在扎实掌握“三基”的基础上,否则一味求快则会快中出错。

2、特例法

用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断。常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。

当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。近几年高考选择题中可用或结合特例法解答的约占30%左右。

3、筛选法

从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断。

筛选法适应于定性型或不易直接求解的选择题。当题目中的条件多于一个时,先根据某些条件在选择支中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选择支的范围那找出矛盾,这样逐步筛选,直到得出正确的选择。它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40%。

4、代入法

将各个选择项逐一代入题设进行检验,从而获得正确的判断。即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案。

代入法适应于题设复杂,结论简单的选择题。若能据题意确定代入顺序,则能较大提高解题速度。

5、图解法

据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断。习惯上也叫数形结合法。

严格地说,图解法并非属于选择题解题思路范畴,而是一种数形结合的解题策略。但它在解有关选择题时非常简便有效。不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图象反而会导致错误的选择。如:

本题如果图象画得不准确,很容易误选B;答案为C。

数形结合,借助几何图形的直观性,迅速作正确的判断是高考考查的重点之一;历年高考选择题直接与图形有关或可以用数形结合思想求解的题目约占50%左右。

6、割补法

“能割善补”是解决几何问题常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题长度。

我们在初中学习平面几何时,经常用到“割补法”,在立体几何推导锥体的体积公式时又一次用到了“割补法”,这些蕴涵在课本上的方法当然是各类考试的重点内容。因此,当我们遇到不规则的几何图形或几何体时,自然要想到“割补法”。

7、极限法

从有限到无限,从近似到精确,从量变到质变。应用极限思想解决某些问题,可以避开抽象、复杂的运算,降低解题难度,优化解题过程。

用极限法是解选择题的一种有效方法。它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,迅速找到答案。

8、估值法

由于选择题提供了唯一正确的选择支,解答又无需过程。因此可以猜测、合情推理、估算而获得。这样往往可以减少运算量,当然自然加强了思维的层次。

估算,省去了很多推导过程和比较复杂的计算,节省了时间,从而显得快捷。其应用广泛,它是人们发现问题、研究问题、解决问题的一种重要的运算方法。

三、总结提炼

从考试的角度来看,解选择题只要选对就行,至于用什么“策略”,“手段”都是无关紧要的。所以人称可以“不择手段”。

但平时做题时要尽量弄清每一个选择支正确的理由与错误的原因,另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,化常规为特殊,避免小题大作,真正做到准确和快速。

总之,解答选择题既要看到各类常规题的解题思想原则上都可以指导选择题的解答,但更应该充分挖掘题目的“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。这样不但可以迅速、准确地获取正确答案,还可以提高解题速度,为后续解题节省时间。

解答题答题模板

三角变换与三角函数的性质问题

1、解题路线图

①不同角化同角

②降幂扩角

③化f(x)=Asin(ωx+φ)+h

④结合性质求解。

2、构建答题模板

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

解三角形问题

1、解题路线图

(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

数列的通项、求和问题

1、解题路线图

①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

利用空间向量求角问题

1、解题路线图

①建立坐标系,并用坐标来表示向量。

②空间向量的坐标运算。

③用向量工具求空间的角和距离。

2、构建答题模板

①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

②写坐标:建立空间直角坐标系,写出特征点坐标。

③求向量:求直线的方向向量或平面的法向量。

④求夹角:计算向量的夹角。

⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

圆锥曲线中的范围问题

1、解题路线图

①设方程。

②解系数。

③得结论。

2、构建答题模板

①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

④再回顾:注意目标变量的范围所受题中其他因素的制约。

解析几何中的探索性问题

1、解题路线图

①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)

②将上面的假设代入已知条件求解。

③得出结论。

2、构建答题模板

①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。

④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。

离散型随机变量的均值与方差

1、解题路线图

(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

2、构建答题模板

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

函数的单调性、极值、最值问题

1、解题路线图

(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。

(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。

2、构建答题模板

①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)

②解方程:解f′(x)=0,得方程的根。

③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。

④得结论:从表格观察f(x)的单调性、极值、最值等。

⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。

分析 方法 选择题 选项
版权声明

本文来自投稿,不代表本站立场,转载请注明出处。

分享:

扫一扫在手机阅读、分享本文